

CERTIFICATION LICENCE TO USE KEYMARK

Certificate No SKM 10209.1

DQS Hellas grants the present certificate to the enterprise:

SOLE S.A.

26, Amarousiou Chalandriou, 15125 Marousi

for the product:

Type of Solar Collectors Family: S200, S230, S260

Trademarks: SUPERSOL, ECO

which is produced in conformity with the normative document:

EN 12975:2022 EN ISO 9806:2017

at the following location:

E31

The present certificate is granted in accordance with:

- *the DOS Hellas General Rules for the Certification of Products,*
- the Specific Rule for Certification EKIII.001 «Specific Rule for Certification of Solar Collectors, and Thermal Solar Heating Systems for Domestic Hot Water»,
- the Specific CEN Keymark Scheme Rules for Solar Thermal Products,
- the Annex of Solar Keymark Certificate.

and is ruled by the terms of the relevant contract between DQS Hellas and the enterprise.

Date of issue: 2025-06-20
Date of valid: 2027-11-20

Massach 1

Panagiotis Giannoutsos Director of Certification **Dr. Emmanuel Deliyannakis**Managing Director

Notified Body: 2, Kalavriton Street, 14564 Kifissia - Athens, Greece

Annex to Solar Keymark Certificate							Licence Number			SKM 10209.1			
							sued		2024-11-28 DQS Hellas				
							by						
Licence holder	SOLE S	.A.					GREECE		A TO THE				
Brand (optional)						Web	http://w	ww.sole.	gr				
Street, Number	Laikon Agonon & Lefktron					E-mail							
Postcode, City	13671 Acharnai					Tel							
Collector Type						Flat plat	e collecto	r					
Concettor Type						riat piat							
Collector name		<u></u>				Power output per collector Gb = 850 W/m2, Gd = 150 W/m2 & u = 1.3 m/s $\vartheta_m - \vartheta_a$							
		SS ₹	s ±	length Gross width	Gross								
		Gross area (A _G)	Gross length			0 K	10 K	30 K	50 K	70 K	89 K		
		m ²	mm	mm	mm	W	W	W	W	w	W		
SUPERSOL S200 (ECO S200)		1.88	1,960	960	82	1,455	1,389	1,237	1,059	854	635		
SUPERSOL S230 (ECO S230)		2.28	1,960	1,165	82	1,765	1,685	1,500	1,284	1,035	770		
SUPERSOL S260 (ECO S260)		2.64	2,135	1,238	82	2,043	1,950	1,737	1,486	1,199	891		
	\rightarrow									-			
									-				
Power output per m ² gross area						774	739	658	563	454	338		
Power output per m² gross area	od l	s vheat?	tate - out	door		774	739	658	563	454	338		
Performance parameters test meth			tate - out		23			Service and Company		10000,000			
Performance parameters test meth Performance parameters (related to		Steady s η0, b	a1	a2	a3	774 a4	a5	a6	a7	a8	338 Kd		
Performance parameters test meth			a1		a3 J/(m³K) 0.000		a5 J/(m²K)	Service and Company	a7	10000,000			
Performance parameters test meth Performance parameters (related to Units Test results	o A _G)	η0, b -	a1 W/(m²K) 3.34	a2 W/(m²K²) 0.018	J/(m³K) 0.000	a4 -	a5	a6 s/m	a7 W/(m²K⁴)	a8 W/(m²K⁴)	Kd -		
Performance parameters test meth Performance parameters (related to Units Test results Incidence angle modifier test metho	o A _G)	η0, b - 0.782	a1 W/(m²K) 3.34 Steady s	a2 W/(m²K²) 0.018 tate - out	J/(m³K) 0.000 door	a4 - 0.00	a5 J/(m²K) 10,630	a6 s/m 0.000	a7 W/(m²K⁴) 0.00	a8 W/(m²K⁴) 0.0E+00	Kd - 0.93		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier	o A _G)	η0, b - 0.782 Angle	a1 W/(m²K) 3.34 Steady s 10°	$a2$ $W/(m^2K^2)$ 0.018 $tate - out$ 20°	J/(m³K) 0.000 door 30°	a4 - 0.00	a5 J/(m²K) 10,630 50°	a6 s/m 0.000	a7 W/(m²K⁴) 0.00	a8 W/(m²K⁴) 0.0E+00	Kd - 0.93		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal	o A _G)	η0, b - 0.782 Angle Κ _{θT,coll}	a1 W/(m²K) 3.34 Steady s 10° 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99	a5 J/(m²K) 10,630 50° 0.97	a6 s/m 0.000 60° 0.92	a7 W/(m²K⁴) 0.00 70° 0.81	a8 W/(m²K⁴) 0.0E+00 80° 0.55	Kd - 0.93 90° 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal	o A _G)	η0, b - 0.782 Angle	a1 W/(m²K) 3.34 Steady s 10°	$a2$ $W/(m^2K^2)$ 0.018 $tate - out$ 20°	J/(m³K) 0.000 door 30°	a4 - 0.00	a5 J/(m²K) 10,630 50° 0.97 0.97	a6 s/m 0.000	a7 W/(m²K⁴) 0.00	a8 W/(m²K⁴) 0.0E+00	Kd - 0.93		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing	o A _G)	η0, b - 0.782 Angle Κ _{θT,coll}	a1 W/(m²K) 3.34 Steady s 10° 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99	a5 J/(m²K) 10,630 50° 0.97 0.97 Water	a6 s/m 0.000 60° 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55	Kd - 0.93 90° 0.00 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area	o A _G) od	$η0, b$ - 0.782 Angle $K_{θT,coll}$ $K_{θL,coll}$	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99	a5 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81	a8 W/(m²K⁴) 0.0E+00 80° 0.55	90° 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing	o A _G) od , a, A _G) during th	$\eta 0$, b - 0.782 Angle $K_{\theta T, coll}$ $K_{\theta L, coll}$	a1 W/(m²K) 3.34 Steady s 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	a5 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55	90° 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of	o A _G) od , a, A _G) during th	$\eta 0$, b - 0.782 Angle $K_{\theta T, coll}$ $K_{\theta L, coll}$	a1 W/(m²K) 3.34 Steady s 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	a5 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55	90° 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature)	o A _G) od , a, A _G) during th	$\eta 0$, b - 0.782 Angle $K_{\theta T, coll}$ $K_{\theta L, coll}$	a1 W/(m²K) 3.34 Steady s 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K°C	90° 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (CMaximum operating pressure)	od A _G) od a, A _G) during the G = 1000	$η0$, b - 0.782 Angle $K_{\theta T,coll}$ $K_{\theta L,coll}$ mermal p W/m^2 ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K°C	90° 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory	o A _G) od , a, A _G) during th	$η0$, b - 0.782 Angle $K_{\theta T,coll}$ $K_{\theta L,coll}$ mermal p W/m^2 ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa	Kd - 0.93 90° 0.00 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A _G) od a, A _G) during th G = 1000	$η0$, b - 0.782 Angle $K_{\theta T,coll}$ $K_{\theta L,coll}$ D W/m ² ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa	Kd - 0.93 90° 0.00 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A _G) od a, A _G) during th G = 1000 NCSR "D 4422 DE	η0, b - 0.782 Angle K _{θT,coll} K _{θL,coll} mermal p W/m²;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr 28/11/2	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa	90° 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A, A _G) during th G = 1000 NCSR "D 4422 DE 4423 DE	η0, b - 0.782 Angle K _{θT,coll} K _{θL,coll} mermal p W/m²;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr 28/11/2 10/10/2	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa	Kd - 0.93 90° 0.00 0.00		
Performance parameters test method Performance parameters (related to Units Test results Incidence angle modifier test method Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A _G) od a, A _G) during the G = 1000 NCSR "D 4422 DE 4423 DE 4424 DO	η0, b - 0.782 Angle K _{θ1,coll} N/m ² ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00 reforman \(\delta_a = 30 \cdot 0) TOS"	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op}	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr 28/11/2-10/10/10/2-10/10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa	90° 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A _G) od a, A _G) during the G = 1000 NCSR "D 4422 DE 4423 DE 4424 DO	η0, b - 0.782 Angle K _{θ1,coll} N/m ² ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00 reforman \(\delta_a = 30 \cdot 0) TOS"	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	35 J/(m²K) 10,630 50° 0.97 0.97 Water dm/dt (ϑ _m -ϑ _a) _n ϑ _{stg} ϑ _{max op} p _{max,op} www.sol	a6 s/m 0.000 60° 0.92 0.92	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr 28/11/2 10/10/2 6.2 (13.01.	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa 4 4 2022)	Kd - 0.93 90° 0.00 0.00		
Performance parameters test methor Performance parameters (related to Units Test results Incidence angle modifier test methor Incidence angle modifier Transversal Longitudinal Heat transfer medium for testing Flow rate for testing (per gross area Maximum temperature difference of Standard stagnation temperature (Maximum operating temperature Maximum operating pressure Testing laboratory Test report(s)	od A _G) od a, A _G) during the G = 1000 NCSR "D 4422 DE 4423 DE 4424 DO	η0, b - 0.782 Angle K _{θ1,coll} N/m ² ;	a1 W/(m²K) 3.34 Steady s 10° 1.00 1.00 reforman \(\delta_a = 30 \cdot 0) TOS"	a2 W/(m²K²) 0.018 tate - out 20° 1.00 1.00	J/(m³K) 0.000 door 30° 1.00	a4 - 0.00 40° 0.99 0.99	a5 $J/(m^2K)$ 10,630 50° 0.97 0.97 $Water$ dm/dt $(\vartheta_m-\vartheta_a)_n$ ϑ_{stg} $\vartheta_{max op}$ $p_{max,op}$ $www.sol$ $Dated$	a6 s/m 0.000 60° 0.92 0.92 ar.demo	a7 W/(m²K⁴) 0.00 70° 0.81 0.81 0.020 59 197 150 1500 kritos.gr 28/11/2-10/10/10/2-10/10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2-10/10/2	a8 W/(m²K⁴) 0.0E+00 80° 0.55 0.55 kg/(sm² K °C °C kPa 4 4 4 2022)	Kd - 0.93 90° 0.00 0.00		

Central Offices: Kalavriton 2, 145 64 kifisia, Athens, Tel: +301 6233493-4 , Fax: +301 6233495, http://www.dqsglobal.com, e-mail: i.alexiou@dqs.gr

Page 2/2

Annouse Calaurian Louis						12	AI	a la - :		CIA		ige 2/2
Annex to Solar Keymark Certif	Licence Number					SKM 10209.1 2024-11-20						
Supplementary Information						Issue	t t			2024-	11-20	
Gross Thermal Yield in kWh/colle	ctor at n	nean fl	uid ter	nperat	ure ປີ _m	ı						
Standard Location		Athens			Davos			ockhol			Vürzbur	_
	_m 25°C	50°C		25°C	50°C	75°C	25°C	50°C	75°C	25°C	50°C	75°C
SUPERSOL 5200 (ECO 5200)		1,727				791	1,342	888	532	1,459	963	568
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260)	2,877 3,331	-	1,373 1,589				1,627 1,884		646 748		1,168 1,352	689
30PER30L 3200 (ECO 3200)	3,331	2,425	1,569	2,304	1,760	1,110	1,004	1,247	748	2,049	1,332	798
Gross Thermal Yield per m ² gross area	1,262	918	602	971	677	421	714	472	283	776	512	302
Annual efficiency, η_a	71%	52%	34%	60%	42%	26%	61%	472	283	62%	41%	24%
Fixed or tracking collector	7170	J2/0				tude - 1!					41/0	24/0
Annual irradiation on collector plane	17	65 kWh			30 kWh			66 kWh			14 kWh/	m²
Mean annual ambient air temperatur	_	18.5°C			3.2°C	,		7.5°C		9.0°C		
Collector orientation or tracking mode		outh, 2	5°	S	outh, 3	0°	S	outh, 45	ō°	South, 35°		
The collector is operated at constant		ure θm	(mean c	of in- an	d outlet	t tempei	atures)	. The ca	lculatio	n of the	annual	
collector performance is performed w	ith the of	ficial So	lar Keyr	nark spr	eadshe	et tool S	Scenoca	lc Ver. 6	5.2 (13.0	01.2022). A deta	iled
description of the calculations is avail	able at ht	tp://ww	/w.estif.	org/sola	rkeym	arknew/	1					
		Add	ditiona	al Infor	matic	n						
Collector heat transfer medium										Water-	Glycole	
The collector is deemed to be suitable	for roof i	integrat	ion							N	lo	
The collector was tested successfully (ınder the	followi	ng cond	itions:								
Climate class (A+, A, B or C)									/	4	-	-
$G(W/m^2) > 1000$ $\vartheta_a(^{\circ}C) >$			20 H _X (M.				/m²) >		60			
Maximum tested positive load										000	Р	
Maximum tested negative load Hail resistance using steel ball (maxim	um dron	hoight))00 2	P	
Hall resistance using steel ball (maxim			nal co	llector	attrih	uto(s)			•		'	11
Using external power source(s) for no			No				sure(s) f	or self-r	rotecti	on		No
Co-generating thermal and electrical	-		No	Active or passive measure(s) for self-protection Façade collector(s)							No	
Energy Labelling Inf		n				litiona	Infor	mative	e Tech	nical C	ata	
Reference Area, A _{sol} (m ²)									Aperture Area, A _a (m ²)			
	Reteren				11-V-1234S-A:7.2-189					1.77		
SUPERSOL \$200 (ECO \$200)	Referen		A _{sol} (III)									
SUPERSOL S200 (ECO S200)	Keterer	1.88	A _{sol} (III)	11-V-1	234S-A	:7.2-189	2-C:16.6	5-1024		1.	77	
SUPERSOL S230 (ECO S230)	кетегег	1.88 2.28	A _{sol} (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
	Reteren	1.88	A _{sol} (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1.	77 17	
SUPERSOL S230 (ECO S230)	Reteren	1.88 2.28	A _{sol} (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
SUPERSOL S230 (ECO S230)	кетегег	1.88 2.28	A _{sol} (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
SUPERSOL S230 (ECO S230)	кетегег	1.88 2.28	Asol (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
SUPERSOL S230 (ECO S230)	Keterer	1.88 2.28	Asol (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
SUPERSOL S230 (ECO S230)	Keterer	1.88 2.28	A _{sol} (III)	11-V-1 14-V-1	234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6	5-1024 5-1226		1. ²	77 17	
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2		1.88 2.28 2.64		11-V-1 14-V-1 15-V-1	234S-A 234S-A 234S-A	:7.2-189 :7.2-189	2-C:16.6 2-C:16.6 7-C:16.6	5-1024 5-1226 5-1301		1. 2. 2. 2	77 17 54	A _{sol}
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260)		1.88 2.28 2.64		11-V-1 14-V-1 15-V-1 Data re Zero-lo	234S-A 234S-A 234S-A equired ss effici	:7.2-189 :7.2-189 :7.2-206 :7.2-206 for CDR	2-C:16.6 2-C:16.6 7-C:16.6	5-1024 5-1226 5-1301	013 - R 0.	1. 2. 2. 2. eferenc	77 17 54 e Area	-
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2	013 - Refo	1.88 2.28 2.64 2.64		11-V-1 14-V-1 15-V-1 Data re Zero-lo First-or	234S-A 234S-A 234S-A equired ss effici	:7.2-189 :7.2-189 :7.2-206 for CDR iency (η _c	2-C:16.6 7-C:16.6 7-C:16.6 8 (EU) No.0 10 (a ₁)	5-1024 5-1226 5-1301	013 - R 0. 3.	1. 2. 2. 2	e Area <i>u</i>	- n²K)
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η _{col})	013 - Refe	1.88 2.28 2.64 2.64 61% (EU) No		11-V-1 14-V-1 15-V-1 Data re Zero-lo First-or Second	234S-A 234S-A 234S-A equired ss effici der coe -order	For CDR iency (η _c efficient coefficient c	2-C:16.6 7-C:16.6 (EU) No. (a ₁) ent (a ₂)	5-1024 5-1226 5-1301 0 812/2	013 - R 0. 3.	1. 2. 2	77 17 54 e Area	- n²K)
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defir 811/2013 as collector efficiency of the solatemperature difference between the solar	013 - Reference in CDR ar collector acollector a	1.88 2.28 2.64 2.64 erence 7 61% (EU) No rata and the	Area	11-V-1 14-V-1 15-V-1 Data re Zero-lo First-or Second Inciden	234S-A 234S-A 234S-A equired ss effici der coe -order ce angl	for CDR iency (η _c efficient coefficie e modif	2-C:16.6 2-C:16.6 7-C:16.6 (EU) No. (a ₁) ent (a ₂) der IAM	5-1024 5-1226 5-1301 0 812/2 (50°)	013 - R 0. 3. 0.0	1. 2. 2. 2	e Area / - W/(i W/(n	- m²K) n²K²) -
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η_{col}) Remark: Collector efficiency (η col) is defir 811/2013 as collector efficiency of the solutemperature difference between the solar surrounding air of 40 K and a global solar i	013 - Reference din CDR ar collector arradiance contradiance contradia	1.88 2.28 2.64 2.64 (EU) No rata and the of 1000 V	Area	11-V-1 14-V-1 15-V-1 Data re Zero-lo First-or Second Inciden Remark	234S-A 234S-A 234S-A equired ss effici der coe -order ce angli	for CDR iency (η _c efficient coefficie e modifita given i	2-C:16.6 2-C:16.6 7-C:16.6 (EU) No. (a ₁) ent (a ₂) ier IAM <i>n this sec</i>	5-1024 5-1226 5-1301 0 812/2 (50°)	013 - R 0. 3. 0.c 0.related	eferenc 77 34 018 97 to collect	e Area A W/(I W/(r cor referee	n ² K) n ² K ²) -
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defir 811/2013 as collector efficiency of the solatemperature difference between the solar surrounding air of 40 K and a global solar i expressed in % and rounded to the nearest	013 - Reference din CDR ar collector a collector a cradiance con integer. D	2.28 2.64 erence 7 61% (EU) No rata and the of 1000 Veviating	Area	11-V-1 14-V-1 15-V-1 Data re Zero-lo First-or Second Inciden Remark area (A	234S-A 234S-A 234S-A 234S-A equired ss effici der coe -order ce angle : The data : The data : The data	for CDR iency (η _c efficient coefficie e modif ta given i h is aperti	2-C:16.6 2-C:16.6 7-C:16.6 (EU) No. (a ₁) (a ₁) ent (a ₂) ier IAM n this secure area	5-1024 5-1226 5-1301 0 812/2 (50°) ction are	013 - R 0. 3. 0.0 0.1 related	1. 2 2 2 4. 2 2 2 2 2 2	e Area / 54 e Area / - - W/(i W/(r - cor refere N 12975	m ² K) m ² K ²) - ence -2 <u>or</u>
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defir 811/2013 as collector efficiency of the solatemperature difference between the solar surrounding air of 40 K and a global solar i expressed in % and rounded to the nearest the regulation ηcol is based on reference as	013 - Reference din CDR ar collector a collector a cradiance con integer. Direa (Asol)	2.28 2.64 2.64 erence 7 61% (EU) No rat a and the of 1000 Vieviating which is	Area V/m², from	Data re Zero-lo First-or Second Inciden Remark area (A gross ar	234S-A 234S-A 234S-A 234S-A equired ss effici der coe -order ce angle : The data sof) whice	for CDR iency (η _c efficient coefficie e modifita given i	2-C:16.6 2-C:16.6 7-C:16.6 (EU) No. (a ₁) (a ₁) ent (a ₂) ier IAM n this secure area Consister	5-1024 5-1226 5-1301 0 812/2 (50°) ction are for valu	013 - R 0. 3. 0.c 0.related es accorrets for eight	eference 77 34 018 97 to collect ding to E ther ape	e Area A W/(I W/(r - cor reference N 12975 rture or g	m ² K) m ² K ²) - ence -2 or gross
SUPERSOL S230 (ECO S230) SUPERSOL S260 (ECO S260) Data required for CDR (EU) No 811/2 Collector efficiency (η _{col}) Remark: Collector efficiency (ηcol) is defir 811/2013 as collector efficiency of the solatemperature difference between the solar surrounding air of 40 K and a global solar i expressed in % and rounded to the nearest	013 - Reference din CDR ar collector a collector a cradiance con integer. Direa (Asol)	2.28 2.64 2.64 erence 7 61% (EU) No rata and the of 1000 Verviating which is	Area V/m², from	Data re Zero-lo First-or Second Inciden Remark area (A gross ar	equired ss effici der coe -order ce angl The dat sof) whice ea for IS to be used	for CDR iency (η _c efficient coefficie e modif ta given i h is aperts 60 9806. d in calcu	2-C:16.6 2-C:16.6 7-C:16.6 (EU) No. (a ₁) (a ₁) ent (a ₂) ier IAM n this secure area Consister	5-1024 5-1226 5-1301 0 812/2 (50°) ction are for valu	013 - R 0. 3. 0.c 0.related es accorrets for eight	eference 77 34 018 97 to collect ding to E ther ape	e Area A W/(I W/(r - cor reference N 12975 rture or g	m ² K) n ² K ²) - ence -2 or gross

mail: i.alexiou@dqs.gr